SAGBI bases and degeneration of spherical varieties to toric varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Degenerations of Spherical Varieties

We prove that any affine, resp. polarized projective, spherical variety admits a flat degeneration to an affine, resp. polarized projective, toric variety. Motivated by Mirror Symmetry, we give conditions for the limit toric variety to be a Gorenstein Fano, and provide many examples. We also provide an explanation for the limits as boundary points of the moduli space of stable pairs whose exist...

متن کامل

Toric Degeneration of Weight Varieties and Applications

We show that a weight variety, which is a quotient of a flag variety by the maximal torus, admits a flat degeneration to a toric variety. In particular, we show that the moduli spaces of spatial polygons degenerate to polarized toric varieties with moment polytopes defined by the lengths of their diagonals. We extend these results to more general Flaschka-Millson hamiltonians on the quotients o...

متن کامل

Secant Varieties of Toric Varieties

If X is a smooth projective toric variety of dimension n we give explicit conditions on characters of the torus giving an embedding X →֒ Pr that guarantee dimSecX = 2n+ 1. We also give necessary and sufficient conditions for a general point of SecX to lie on a unique secant line when X is embedded into Pr using a complete linear system. For X of dimension 2 and 3 we give formulas for deg SecX in...

متن کامل

Toric Varieties

4.1.5. The weighted projective space P(q0, . . . ,qn), gcd(q0, . . . ,qn) = 1, is built from a fan in N = Z/Z(q0, . . . ,qn). Let ui ∈ N be the image of ei ∈ Z . The dual lattice is M = {(a0, . . . ,an) ∈ Z n+1 | a0q0+ · · ·+anqn = 0}. Also assume that gcd(q0, . . . , q̂i, . . . ,qn) = 1 for i = 0, . . . ,n. (a) Prove that the ui are the primitive ray generators of the fan giving P(q0, . . . ,qn...

متن کامل

Toric Degeneration of Schubert Varieties and Gelfand–cetlin Polytopes

This note constructs the flat toric degeneration of the manifold Fln of flags in Cn from [GL96] as an explicit GIT quotient of the Gröbner degeneration in [KM03]. This implies that Schubert varieties degenerate to reduced unions of toric varieties, associated to faces indexed by rc-graphs (reduced pipe dreams) in the Gelfand–Cetlin polytope. Our explicit description of the toric degeneration of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2005

ISSN: 0026-2285

DOI: 10.1307/mmj/1114021088